
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:1069–1076
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1739

High-order methods and mesh adaptation for Euler equations
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SUMMARY

In this paper, we point out a novel contribution of mesh adaptation to high-order methods for stationary and
time-dependent problems. From theoretical results, we exhibit that mesh adaptation, based on an adjoint-
free method, achieves a global second-order mesh convergence for numerical solutions with discontinuities
in Lp norm. To attain this result, it is mandatory to combine together all mesh adaptive methods developed
in the previous work. This theoretical result is validated on 2D and 3D examples for stationary and
time-dependent simulations. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Classical high-order shock capturing methods, such as MUSCL, ENO, residual distribution scheme,
etc. are theoretically converging at order two or more. Such methods are suitable to compute
discontinuous flows that often occur for supersonic flows, blast waves, interfaces’ problems, etc.
Nevertheless, this theoretical order is never obtained in practice. Only an order less than one is
attained when the mesh is uniformly refined. Indeed, by meshing uniformly a segment, we can
demonstrate that in a discontinuity the interpolation error converges in O(h1/p) for Lp norm.
Similarly when sharp gradients are present in the flow field, the theoretical asymptotic order is
only reached when the mesh size is sufficiently small.

In the field of computational fluid dynamics (CFD), unstructured mesh adaptation is well known
to improve the accuracy of solutions, i.e. it increases the ratio between solution accuracy and the
inverse number of degrees of freedom. Thus, enabling substantial gains in CPU, memory require-
ment and storage space. Visualization of the results is also facilitated. Furthermore, error estimates
have the capability to detect physical phenomena and capture their behavior. Meshes are thus
automatically adapted in critical regions without any a priori knowledge of the problem. Recently,
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convergence analysis was derived for scalar output in the case of adjoint-based adaptation [1, 2],
also called goal-oriented mesh adaptation. However, global convergence of the whole adapted
solution is rarely theoretically analyzed nor numerically observed.

The aim of this paper is to focus on one novel contribution of mesh adaptation for high-order
shock capturing methods. We point out that mesh adaptation, based on an adjoint-free method,
increases the order of convergence in discontinuities. This result implies that the theoretical global
second order of mesh convergence of numerical schemes is recovered by means of adaptive
techniques in the context of discontinuous flows. All the requirements needed in an attempt to
reach this theoretical order are provided in this paper. These requirements are methods developed
in previous works [3, 4]. In other words, this paper presents a synthesis of all previous works and
shows that combined together they impact the convergence order of numerical methods.

For steady flows, we establish that the theoretical asymptotic order in the Lp norm is reached for
the whole solution field with anisotropic mesh adaptation, even if sharp gradients or discontinuities
are present in the flow field. It is based on the continuous metric concept and the convergence of
the adapted mesh at a fixed accuracy. The extension to transient problems is proposed but requires
more efforts since time accuracy is also involved. To address this issue, we utilize a generalization
of the mesh adaptation algorithm for unsteady simulations coupled with a metric intersection in
time procedure and a conservative solution transfer.

2. STATIONARY PROBLEMS

The generation of anisotropic adapted meshes uses the notion of length in a metric space [5].
The introduction of a metric tensor in the dot product definition curves the Euclidean space by
prescribing sizes and directions. The mesh is automatically adapted by generating a unit mesh
with respect to this metric, i.e. the mesh is such that all edges have a length close to one in the
metric and such that all elements are almost regular. A metric is a n×n symmetric definite positive
matrix, where n is the space dimension. When this metric is continuously defined over the whole
domain, it is called a continuous metric. For steady flows, achieving the global theoretical order
of mesh convergence relies on the continuous metric concept and the convergence of the adapted
mesh at a fixed accuracy.

Continuous metric: This concept is based on equivalence classes of meshes [4]. The metric is
then seen as the continuous class representative of all meshes having the same global interpolation
error level value for a given number of vertices. In the following, we precise how the metric is
derived.

Let u be an analytic solution defined on a bounded domain � and N be the desired number of
vertices for the mesh. We aim at creating the ‘best’ mesh H, i.e. to find the optimal continuous
metric M, that minimizes the interpolation error (u−�hu) in Lp norm with N vertices. �hu
denotes the linear interpolate of u on H. To this end, a model of the interpolation error with
respect to a metric M, denoted eM, is required.

In [4], a model of the interpolation error for a metric M is given. It has been proved that locally
the optimal metric has for main directions the eigenvectors of the Hessian of u. Let Ru and �
be Hessian’s eigenvectors and eigenvalues matrices. Then, the local error model for such metric
in the neighborhood of a vertex a could be simplified to eM(a)=∑n

i=1 h
2
i |�2u/��2i |, where hi

and �2u/��2i stand for sizes prescribed by the metric and the eigenvalues of the Hessian in the
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direction of the i th eigenvectors of the Hessian, respectively. Now, we are looking for the function
M that minimizes, for a given number N of vertices, the Lp norm of this error. Therefore, we
have to solve the problem:

min
M

E(M)=min
M

(∫
�
(eM(x))p dx

)1/p
=min

hi

(∫
�

(
n∑

i=1
h2i (x)

∣∣∣∣∣�
2u

��2i
(x)

∣∣∣∣∣
)p

dx

)1/p
(1)

under the constraint:

C(M)=
∫

�

n∏
i=1

h−1
i (x)dx=

∫
�
d(x)dx=N (2)

The resulting optimal metric solution of problem (1)–(2) for the Lp norm in n-dimensions reads

MLp =DLp (det |Hu |)−1/(2p+n)R−1
u |�|Ru with DLp =N 2/n

⎛
⎝∫

�

∣∣∣∣∣
n∏

i=1

�2u
��2i

∣∣∣∣∣
p/(2p+n)

⎞
⎠

−2/n

(3)

DLp is a global normalization term to obtain a mesh with N vertices, and (det |Hu |)−1/(2p+n) is a
local normalization term accounting for the sensitivity of the Lp norm. Indeed, the choice of a Lp

norm is essential in a mesh adaptation process regarding the type of problem solved. For instance
in CFD, physical phenomena can involve large-scale variations. Capturing weak phenomena is
crucial for obtaining an accurate solution by taking into account all phenomena interactions in the
main flow area. Intrinsically, metrics constructed with lower p norms are more sensitive to weaker
variations of the solution, whereas the L∞ norm mainly concentrates on strong singularities (e.g.
shocks).

Mesh convergence order: The expression of the error committed with the optimal metric MLp

is deduced from relations (1) and (3):

E(MLp )=nN−2/n

⎛
⎝∫

�

∣∣∣∣∣
n∏

i=1

�2u
��2i

∣∣∣∣∣
p/(2p+n)

⎞
⎠

(2p+n)/pn

� Cst

N 2/n
(4)

Two main results arise from this relation:

• The interpolation error obtained with the resulting metric E(MLp ) is optimal in Lp norm,
i.e. a larger error is committed whatever the considered metric prescribing N vertices (see
[4] for the proof).

• A global second-order asymptotic mesh convergence is expected for the considered variable
u even if singularities are present in the flow field for all p’s.

As regards the mesh convergence order, a simple analogy with regular grids leads to consider
that N =O((

∏
i=1,n hi )

−1)=O((hn)−1) so that the previous estimate becomes E(MLp )�Cst ′h2.
Practically, this result means that in vicinity of discontinuities, the density of nodes prescribed by
the mesh adaptation strategy is such that the global second-order mesh convergence holds.

This theoretical order has been demonstrated for a smooth function. However, some difficulties
arise when the solution is given by a numerical scheme. Contrary to mesh adaptation for functions,
the accuracy level of the solution depends on the current mesh used for its computation. An iterative
process needs to be set up in order to converge both the mesh and the solution, or equivalently
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the metric field and the solution. The second issue is that we deal with numerical solutions that
are not twice continuously differentiable.

Mesh adaptation scheme: Anisotropic mesh adaptation is a non-linear problem. Therefore,
an iterative procedure is required to solve this problem. For stationary simulations, an adaptive
computation is carried out via a mesh adaptation loop inside which an algorithmic convergence
of the mesh-solution couple is sought. At each stage, a numerical solution is computed on the
current mesh with the flow solver and is analyzed with an error estimate. The continuous metric
theory described above is considered to estimate the error. As the control is performed on the
interpolation error, this approach is independent of the problem at hand. This anisotropic metric
is a function of the solution’s Hessian which is reconstructed from the numerical solution by
a double L2 projection. Next, an adapted mesh, i.e. a unit mesh, is generated with respect to
this metric. Mesh generators use all meshing operations to adapt the mesh and a vertex insertion
procedure based on an anisotropic generalization of Delaunay technique. Finally, the solution is
linearly interpolated on the new mesh. This procedure is repeated until convergence of the couple
mesh-solution.

Application to numerical computation: In our case, the numerical solution provides a continuous
piecewise linear by element representation of the solution. Consequently, our analysis cannot be
applied directly to the numerical solution. The idea is to build a higher-order solution approximation
u∗ of u from uh which is twice continuously differentiable and to consider u∗ in our error estimate.
More precisely, the approximation error could be approximated as ‖u−uh‖p,� ≈‖u∗−uh‖p,�.
The Hessian of u∗ is recovered by a double L2 projection algorithm.

In the context of discontinuous flows, the numerical solution is also piecewise linear by elements
even if it approximates a discontinuous solution. The mesh acts as a convolution operator on
the solution. In this case, we still approximate the solution u with a continuous higher-order
representation and we still apply our error estimate.

3. TIME-DEPENDENT PROBLEMS

The extension to time-dependent problem requires more effort since time accuracy is involved.
Indeed, the continuous metric concept does not take into account time accuracy. For explicit
discretization in time, one can show with a truncature analysis that the error in space control
the error in time under Courant–Friedrichs–Lewy condition. Consequently, to control the solution
accuracy we have to control the error in space throughout a given time frame of computation.
To address this issue, we have proposed a generalization of the mesh adaptation algorithm for
unsteady simulations coupled with metric intersection in time [3]. Then, to reduce the error due
to the interpolation stage, a conservative solution transfer is considered.

Transient fixed-point mesh adaptation scheme: To solve the non-linear problem of mesh adap-
tation for unsteady simulation, a novel algorithm generalizing the mesh adaptation scheme has
been proposed in [3]. This procedure, based on the resolution of a transient fixed point problem
for the couple mesh-solution at each iteration of the mesh adaptation loop, predicts the solution
evolution in the computational domain. Knowing then the solution evolution throughout a short
period of time, the mesh is suitably adapted in all regions where the solution progresses so as to
preserve its accuracy. To this end, a metric intersection in time procedure is introduced in the metric
construction, thereby the time variable is implicitly introduced in the error estimate. Consequently,
this scheme controls the spatial and the time error throughout the computation.
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Conservative interpolation: After generating a new mesh, the solution is transferred or interpo-
lated from the previous mesh to this new adapted mesh. This stage becomes crucial in the context
of unsteady problems. Actually, for second-order methods for conservation laws this stage must
be P1-exact and conservative. In this aim, a solution transfer process based on mesh intersection
has been proposed. For each element of the new mesh, we compute and mesh (with simplices) the
geometric intersection with each element of the previous mesh that it overlaps. Thus, we are able
to compute the mass using Gauss quadrature formula and the gradient on each simplex of the new
mesh. Finally, nodal value solution is reconstructed from this piecewise by element discontinuous
representation.

Conclusion: The space–time mesh obtained produces an optimal convergence order. The conver-
gence cannot be second order for the space–time mesh since the time step (discretization) dtn
is spatially uniform at each time level n. However, as the transient fixed-point mesh adaptation
scheme controls the error in space and in time, the theory predicts a second-order spatial mesh
convergence for the numerical solution at a given instant t .

4. NUMERICAL RESULTS

The predicted theoretical mesh convergence order is numerically assessed on 2D and 3D internal
and external simulations. In all examples, the flow is modeled by the conservative Euler equations.
Assuming that the gas is perfect, these equations could be symbolically rewritten as �W/�t+∇ ·
F(W )=0, where W = t (�,�u,�v,�w,�E) is the conservative variables vector and the vector F
represents the convective operator. We have denoted by � the density, U=(u,v,w) the velocity
vector and E the total energy.

The Euler system is solved with a finite volume technique on unstructured triangular or tetra-
hedral meshes. The proposed scheme is second-order accurate in space and time. This scheme
is vertex centered and uses a particular edge-based formulation with upwind elements [6]. The
flow solver utilizes a HLLC approximate Riemann solver to compute numerical fluxes. High-order
scheme is derived according to a MUSCL-type method using downstream and upstream simplex
combined with a generalization of the Superbee limiter with three entries to guarantee the TVD
property of the scheme [7]. An explicit time stepping algorithm is used by means of a five-stage,
second-order strong-stability-preserving Runge–Kutta scheme.

For each computation, we set for each type of mesh the reference solution as the solution
obtained on the finest mesh of this type. In other words, the reference solution for uniform (resp.
adapted) meshes computations is the solution on the finest uniform (resp. adapted) mesh. Then, the
error is calculated by comparing the computed solution with the reference one on the finest mesh.
More precisely, the computed solution is transferred on the associated reference mesh. Thereafter,
the error is evaluated on the reference mesh using quadrature rule.

Scramjet internal flow: The scramjet configuration at Mach 3 is typical of numerical simulations
in compressible fluids involving highly anisotropic phenomena with very strong shocks. We control
the L1 norm or L2 norm of the error on the pressure for adaptations. The final adapted mesh in
L1 norm containing 22 566 vertices and the corresponding density isolines are shown in Figure 1.
The same figure (right) reports pressure errors in L1 and L2 norms for computations performed
on uniform and adapted meshes. A first and a second-order mesh convergence is obtained for the
uniform and adapted cases, respectively. We obtain the same orders of convergence for the density
and the Mach number even if we adapt only on the pressure.
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Figure 1. Scramjet simulation. Final anisotropic mesh with L1 norm continuous
metric-based adaptation (left) and the associated density isolines (middle). Right: mesh

convergence order in L1 and L2 norms for the pressure.

Figure 2. The 3D supersonic aircraft simulation. Left: final anisotropic mesh with L2 norm
adaptation. Middle: final Mach number iso-value in the symmetry plane. Right: order of

mesh convergence in L2 norm for the Mach number.

Supersonic aircraft: This 3D supersonic case involves an aircraft’s complex geometry included
in a 1 km spherical domain. The aircraft is flying at Mach 1.6 with an angle of attack of 3◦. We
control the L2 norm of the error on the Mach number, as it is really a representative of external
flows. Refinement and shock waves have been propagated in the whole computational domain,
Figure 2, with a final anisotropic adapted mesh containing 569 161 vertices (almost 3.3 millions
tetrahedra). For this 3D stationary case, second-order convergence has been attained for the Mach
number.

Four shocks Riemann problem: This time-dependent problem is a 2D Riemann problem. Initially,
four constant states are set in each quarter of the square domain such that four shock waves
propagate [8]. The mesh is adapted on the density controlling the L1 norm or L2 norm of the
error. The final density and the related adapted mesh in L1 norm at a dimensional time t=0.25 are
presented in Figure 3. Density spatial mesh convergence order is analyzed on uniform and adapted
meshes for the final solution. As expected, a second order is reached for the adapted approach
whereas we obtain only first order for uniform meshes. We obtain the same orders of convergence
for the pressure and the Mach number even if we adapt only on the density.

3D blast in a town: Finally, a 3D blast wave simulation in a city plaza is presented to emphasize
the applicability of the proposed approach for realistic problems. No convergence analysis has
been performed due to the complexity of the problem. In this case, the mesh has been adapted
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Figure 3. Four shocks Riemann problem simulation. Final anisotropic mesh with L2 norm continuous
metric-based adaptation (left) and the associated density isolines (middle). Right: mesh convergence

order in L1 and L2 norms for the density.

Figure 4. 3D blast in a town simulation. Left: progression of the density’s iso-surfaces.
Middle, isotropic adapted surface mesh. Right: top view of the isotropic adapted volume

mesh in a cut parallel to the ground.

isotropically in L∞ norm on the density variable. A perturbation, corresponding to the initial
conditions of the Sod’s shock tube problem [9] is introduced into a uniform field so as to simulate
an explosion in the city. Snapshots of the solution and the associated adapted surface and volume
meshes (containing almost 4.3 millions tetrahedra) are shown in Figure 4.
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